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ABSTRACT 

We answer a question posed by Vitaly Bergelson, showing that  in a 

totally ergodic system, the average of a product of functions evaluated 

along polynomial times, with polynomials of pairwise differing degrees, 

converges in L 2 to the product of the integrals. Such averages are char- 

acterized by nilsystems and so we reduce the problem to one of uniform 

distribution of polynomial sequences on nilmanifolds. 

1. I n t r o d u c t i o n  

1.1. BERGELSON'S QUESTION. In [B96], Bergelson asked if the average of a 

product of functions in a totally ergodic system (meaning that  each power of 

the transformation is ergodic) evaluated along polynomial times converges in 

L 2 to the product of the integrals. More precisely, if (X, X,# ,  T) is a totally 

ergodic probability measure preserving system, P i ,P2 , . . .  ,Pk are polynomials 

taking integer values on the integers with pairwise distinct non-zero degrees, 

and f l ,  f 2 , . . . ,  fk E L cr (#), does 

lim 
N-#oo 

l l v-1 k / lid# L:(,) E fi (T pl(n)x)f2 (T p2 (n) x) ' '" fk(T pk (~)x) -- I I  
n----0 i=1 
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equal 0? 
We show that the answer to this question is positive, under slightly more 

general assumptions. We start with some definitions in order to precisely state 

the theorem. 
An integer  po lynomia l  is a polynomial taking integer values on the integers. 

A family of integer polynomials {pl(n),p2(n),.. . ,pk(n)} is said to be inde- 

penden t  if for all integers ml ,m2 , . . . ,mk  with at least some mj ~ O, j E 
k {1, 2 , . . . ,  k}, the polynomial ~j=l  mjpj(n) is not constant. 

We prove: 

THEOREM 1.1: Let (X ,X ,# ,T )  be a totally ergodic measure preserving 

probability system and assume that {Pl (n), P2 (n) , . . . ,  Pk (n) } is an independent 
family of polynomials. Then for fl ,  f2, . . . , fk E L~(#), 

N - - 1  k lid# L2(t t) (1) N--+~lim 1 n~0= fI(TPl(n)x)f:(TP2(n)X)"'" fk(TP~(n)X) -- i=lH f 

equals O. 

The assumption that the polynomial family is independent is necessary, as can 

be seen by considering an irrational rotation on the circle. An ergodic rotation 

on a finite group with at least two elements demonstrates that the hypothesis of 

total ergodicity is necessary; in this example, the average for any independent 
family with k > 1 polynomials does not converge to the product of the integrals 

for appropriate choice of the functions fi- 
If one assumes that T is weakly mixing, Bergelson [B87] showed that, for all 

polynomial families, the limit in (1) exists and is constant. However, without 

the assumption of weak mixing one can easily show that the limit need not be 
constant, even when restricting to polynomials of degree one. For the polynomial 

families (n, n 2) and (n 2, n 2 + n), the convergence to the product of the integrals 

was proved by Furstenberg and Weiss [FW96]. The existence of the limit in a 

totally ergodic system for an arbitrary family of integer polynomials was shown 

in Host and Kra [HK05], but further analysis is needed to describe the form of 

the limit. 

1.2 .  REDUCTION TO A PROBLEM OF UNIFORM DISTRIBUTION. In [HK05], 

Host and Kra showed that for any family of polynomials, the characteristic 

factor of the average in (1) in a totally ergodic system is an inverse limit of 

nilsystems. We need a few definitions to make this statement precise. 

Given a group G, we denote the commutator of g, h E G by [g, hi = g- lh- lgh.  
I fA ,  B C G, then [A,B] is defined to be {[a,b]:a E A,b e B}. A group G is 
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said to be k -s tep  n i l p o t e n t  if its (k + 1) commutator  [G, G (k)] is trivial. If G 

is a k-step nilpotent Lie group and F is a discrete cocompact subgroup, then 

the compact space X = G/F is said to be a k - s t ep  n i lmani fo ld .  The group 

G acts on G/F by left translation and the translation by a fixed element a E G 

is given by Ta(gF) = (ag)F. Let # denote the unique probability measure on 

X that  is invariant under the action of G by left translations (called the H a a r  

m e a s u r e )  and let C/F denote the Borel a-algebra of G/F. Fixing an element 

a C G, we call the system (G/F,  C/F, #, Ta) a k - s tep  n i l s y s t e m  and call the 

map Ta a n i l r o t a t i o n .  

A f a c t o r  of the measure preserving system (X, X, #, T) is a measure preserv- 

ing system (Y, Y, u, S) so that  there exists a measure preserving map 7r : X --+ Y 

taking # to u and such that  S o 7r = 7r o T. In a slight abuse of terminology, 

when the underlying measure space is implicit we call S a factor of T. 

In this terminology, Host and Kra's result means that  there exists a factor 

(Z, Z,  m) of X,  where Z denotes the Borel a-algebra of Z and m its Haar 

measure, so that  the action of T on Z is an inverse limit of nilsystems, and fur- 

thermore, whenever E(fj IZ) = 0 for some j E {1, 2 , . . . ,  k}, the average in (1) is 

itself 0. Since an inverse limit of nilsystems can be approximated arbitrarily well 

by a nilsystem, it suffices to verify Theorem 1.1 for nilsystems. Moreover, since 

measurable functions can be approximated arbitrarily well in L 2 by continuous 

functions, Theorem 1.1 is equivalent to the following generalization of Weyl's 

polynomial uniform distribution theorem (see Section 4 for the statement of 

Weyl's Theorem): 

THEOREM 1.2: Let X = G/F be a nilmanifold, (G/F,  C/F, p, Ta) a nilsystem 

and suppose that the nilrotation T~ is totally ergodic. If  {Pl (n),p2 ( n ) , . . . ,  Pk ( n ) } 
is an independent polynomial family, then for almost every x E X the sequence 
(am(n)x, ap2(n)x,..., aPk(n)x) is uniformly distributed in X k. 

If G is connected, we can reduce Theorem 1.2 to a uniform distribution 

problem that  is easily verified using the standard uniform distribution theorem 

of Weyl. The general (not necessarily connected) case is more subtle. Using 

a result of Leibman [L02], in Section 2, we reduce the problem to studying 

the action of a polynomial sequence on a factor space with abelian identity 

component. The key step (Section 3) is then to prove that  nilrotations acting on 

such spaces are isomorphic to affine transformations on some finite dimensional 

torus. In Section 4, we complete the proof by checking the result for affine 

transformations. 
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2. R e d u c t i o n  to  a n  a b e l i a n  c o n n e c t e d  c o m p o n e n t  

Suppose tha t  G is a nilpotent Lie group and F is a discrete, cocompact  subgroup. 

Throughout ,  we let Go denote the connected component of the identity element 

and denote the identity element by e. 

A sequence 
g(n) = _pl(n)_p2(n) pk(n) 

u 1 t~ 2 �9 a k 

with a l ,  a 2 , . . . ,  ak 6 G and P l , P 2 , . . . , P k  integer polynomials is called a p o l y -  

n o m i a l  s e q u e n c e  in G. We are interested in studying uniform distribution 

properties of polynomial sequences on the nilmanifold X = G/F.  

Leibman [L02] showed that  the uniform distribution of a polynomial sequence 

in a connected nilmanifold reduces to uniform distribution in a certain factor: 

THEOREM (Leibman): Let X = G / F  be a connected nilmanifold and let g(n) = 

apl (n)_p2(n) . a~k(n) be a polynomial sequence in G. Let Z = X/[Go,  Go] and 1 i t 2  " "  

let Iv: X -~ Z be the natural projection. I f  x 6 X then {g(n)x}nez  is uniformly 

distributed in X i f  and only i f  {g(n)zr(x) }ncz is uniformly distributed in Z. 

We remark that  if G is connected, then the factor X/[Go,  Go] is an abelian 

group. However, this does not hold in general as the following examples illus- 

trate: 

Example  1: On the space G = Z x l~ 2 , define multiplication as follows: if 

gl = ( m l , x l , x 2 )  and g2 = (n l ,Y l ,y~) ,  let 

gl "g2 = (ml + nl ,Xl  + yl ,x2 + y 2  + mly l ) .  

Then G is a 2-step nilpotent group and Go = {0} x 11{ 2 is abelian. The dis- 

crete subgroup F = Z 3 is cocompact and X = G / F  is connected. Moreover, 

[Go, Go] = {e} and so Z/[Go,  Go] = X.  

Example  2: On the space G = Z • l~ 3 , define multiplication as follows: if 

gl = (ml,  xl ,  x2, x3) and g2 = (nl,  Yl, Y2, Y3), let 

1 2 
gl "g2 = (ml + n l , x l  + yl ,x2 +y2  + m l y l , x 3  +Y3 +mlY2  + -~mlyl).  

Then G is a 3-step nilpotent group and Go = {0} x 11{ 3 is abelian. The discrete 

subgroup F = Z 3 x (Z/2)  is cocompact and X = G / F  is connected. Again, 

X/[Go, Go] = X .  

We use Leibman's  Theorem to reduce the problem on uniform distribution to 

the case tha t  Go is abelian: 
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PROPOSITION 2.1: Theorem 1.2 follows i f  it holds for all nilsystems 

(G/F, G/F, It, T~) with Go abelian and T~ totally ergodic. 

Proof.' Given a E G and x E X = G/F, let 

al = (a , e , . . . , e ) ,a2  = ( e , a , e , . . . , e ) , . . . , a k  = ( e , e , . . . , a )  E G k, 

2 = (x, . . .  ,x) E X k, and g(n) = TPl(n)TP2(n)al a2 " " �9 TP~(n)-a~ . We need to check 

that for #-a.e. x E X the polynomial sequence g(n)Sc is uniformly distributed 

in X k. By Leibman's Theorem, it suffices to check that  g(n)#(2) is uniformly 

distributed in the nilmanifold Z k, where Z = X/[Go,Go], # = (7~,..., 7r) and 

7r: X --+ X/[Go,Go] is the natural projection. Since (G/[Go,Go])o is abelian 

and a factor of a totally ergodic system is totally ergodic, the statement follows. 

I 

3. R e d u c t i o n  to  an  affine t r a n s f o r m a t i o n  on  a t o r u s  

We reduce the problem on uniform distribution (Theorem 1.2) to studying an 

affine transformation on a torus. If G is a group then a map T: G --+ G is 

said to be affine if T(g) = bA(g) for an endomorphism A of G and some 

b E G. The endomorphism A is said to be u n i p o t e n t  if there exists n E N so 

that (A - Id) n = 0. In this case we say that the affine transformation T is a 

unipotent affine transformation. 

PROPOSITION 3.1: Let X = G/F be a connected nilmanifold such that Go is 

abelian. Then any nilrotation Ta(x) = ax defined on X with the Haar measure 

It is isomorphic to a unipotent a~ne transformation on some finite dimensional 

torus. 

Proof: First observe that for every g E G, the subgroup g-lGog is both open 

and closed in G so g-lGog = Go. Hence, Go is a normal subgroup of G. 

Similarly, since GoF is both open and closed in G, we have that (GoF)/F is 

open and closed in X. Since X is connected, X = (GoF)/F and so G = GoF. 

We claim that F0 = F ~ Go is a normal subgroup of G. Let 70 E Fo and 

g = go7, where go E Go and 7 E F. Since Go is normal in G, we have that  

g-17og E Go. Moreover, 

g-17og = 7-1go1~0g07 -- 7 -1707  E F, 

the last equality being valid since Go is abelian. Hence, g-l~/og E F0 and F0 is 

normal in G. 
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Therefore we can substitute G/Fo for G and F/Fo for F; then X = 

(G/Fo)/(F/Fo).  So we can assume that  Go N F = {e}. Note that  we now 

have that  Go is a connected compact  abelian Lie group and so is isomorphic to 

some finite dimensional torus T d. 

Every g C G is uniquely representable in the form g = goT, with go E Go, 7 E 

F. The map r X -+ Go, given by r = go, is a well defined homeomorphism. 

Since r  = hr for any h E Go, the measure r on Go is invariant 

under left translations. Thus r is the Haar  measure on Go. If a = aoT, g = 

go7 r with ao,go ~ Go and 7 ,7  r E F, then agF = aoTgoT-1F. Since 7go7 -1 E Go, 

we have that  r  = aoTgo7 -1. Hence r conjugates Ta to Ta~: Go -+ Go 

defined by 

T~(go) = CTar -1 = ao'Ygo') +-1. 

Since Go is abelian this is an affine map; its linear part  go "+ "Ygo7 -1 is unipotent 

since G is nilpotent. Letting r Go ~ ~r d denote the isomorphism between Go 

and ~r d, we have that  Ta is isomorphic to the unipotent affine t ransformation 

S = CTa~r -1 acting on ~d. m 

We illustrate this with the examples of the previous section: 

Example 3: Let X be as in Example  1 and let a = (ml,  al ,  a2). Since Go/Fo = 

~,2 we see that  Ta is isomorphic to the unipotent affine t ransformation S: ~2 __+ 

"It 2 given by 

S(Xl,X2) ~-- (Xl + al,x2 + mix1 + as). 

Example 4: Let X be as in Example 2 and a = (ml ,  al ,  as, a3). Since Go/F0 = 

~ 3 / ( Z  2 • Z /2) ,  and r Go/F0 ~ ~r 3 defined by r x2, xz) = (Xl, x2,2x3) is an 

isomorphism, we see tha t  Ta is isomorphic to the unipotent affine t ransformation 

S: ~,3 _+ ~3 given by 

S(Xl, x2, x3) = (xl -4- al, x2 + mix1 + as, x3 + 2mix2 + m2xl + 2a3). 

PROPOSITION 3.2: Theorem 1.2 follows i f  it holds for all nilsystems 

(G/F, G/F, #, Ta) such that Ta is isomorphic to an ergodic, unipotent, a//ine 

transformation on some finite dimensional torus. 

Proof: We first note that  since X = G/F admits  a totally ergodic nilrotation 

Ta, it must be connected. Indeed, let Xo be the identity component  of X.  Since 

X is compact,  it is a disjoint union of d copies of translations of Xo for some 

d E N. Since a permutes these copies, a d preserves Xo. By assumption, the 

translation by Tad = T d is ergodic and so Xo = X.  
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By Proposition 2.1 we can assume that  Go is abelian. Since X is connected, 

the result follows from Proposition 3.1. | 

4. U n i f o r m  d i s t r i b u t i o n  for  an  aff ine t r a n s f o r m a t i o n  

We are left with showing that  Theorem 1.2 holds when the nilsystem is isomor- 

phic to an ergodic, unipotent, affine system on a finite dimensional torus. Before 

turning into the proof, note that  if G is connected then the uniform distribution 

property of Theorem 1.2 holds for every x E X. However, this does not hold in 

general. We illustrate this with the following example: 

Example 5: We have seen that  the nilrotation of Example 1 is isomorphic to 

the affine transformation S: ~2 _+ T2 given by 

S ( X l , X 2 )  = (Xl + a l , x 2  -] m i x 1  + a 2 ) .  

If ml  = 2 and al = a2 = a is irrational then S is totally ergodic and Sn(xl ,  x2) = 

(Xl + na, x2 + 2nxl + n2a). Then 

( s n ( o ,  0), sn2(o ,  0)) ---- (na, n2a, n2a, n4a) 

is not uniformly distributed on "Ii '4. On the other hand 

(Sn(xl,  x2),S ~2(xl, x~)) = 

(xl + na, x2 + 2nxl + n2a, xl + n2a, x2 + 2n2xl + n4a) 

is uniformly distributed on ~4 as long as a and xl are rationally independent. 

The main tool used in the proof of Theorem 1.2 is the following classic theorem 

of Weyl [W16] on uniform distribution: 

(i) Let an C ~d. Then an is uniformly distributed in •d i f  THEOREM (Weyl): 

and only i f  
N 

for every nonzero m E Z d, where m . an denotes the inner product of m and an. 

(ii) / f  an = p(n) where p is a real valued polynomial with at least one non- 

constant coefficient irrational, then 

N 
lira 1 E e 2 ~ i a ~  

n~l  

Before turning to the proof of Theorem 1.2, we prove a lemma that  simplifies 

the computations: 
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LEMMA 4.1: Let T: ~d __+ Td be de~ned by T ( x )  = A x  + b, where A is a d • d 

unipotent  integer matr ix  and b E ~d. A s s u m e  fur thermore that  T is ergodic. 

Then  T is a factor o f  an ergodic attune transformation S: ~d __+ •d, where  

S = S1 • $2 • "'" x S~ and for r = 1, 2 , . . . ,  s, S~: T dr ~ T d~ (~ :=1  dr -- d) has 

the form 

Sr (X~l, xr2, . .  �9 X~d,.) = (Xrl + b~, x~2 + x r l , . . . ,  Xrd,. + Xrd, -  1 ) 

for some br C T. 

P r o o f  Let J be the Jordan canonical form of A with Jordan blocks Jr of 

dimension dr for r = 1, 2 , . . . ,  s. Since A is unipotent, all diagonal entries of J 

are equal to 1. There exists a matrix P with rational entries such that  P A  = J P .  

After multiplying P by an appropriate integer, we can assume that  it too has 

integer entries. So P defines an endomorphism P: ~d __} ~]Fd such that  P T  = S P ,  

where S: Td __+ Td is given by S ( x )  = J ( x )  + c for c = P(b).  Hence, T is a factor 

of S. By making a change of variables x -+ x + a for some suitable a E T d, we 

can assume that  S has the advertised form. 

It remains to show that  S is ergodic. Since J is unipotent, using a theorem of 

Hahn ([H63], Theorem 4) we get that  ergodicity of S is equivalent to showing 

that  for every nontrivial character X in the dual of T d we have the implication 

X ( J x )  = x ( x )  for e v e r y x C T  d ~ X(c) ~ l. 

Suppose that  X ( J x )  = X(x) .  Using the relation P A  = J P  we get that  x ' ( A x )  = 

X'(x)  where X'(X) = x ( P x ) .  Since T ( x )  = A x  + b is assumed to be ergodic, 

again using Hahn's theorem we get that  xr(b) r 1. The relation P A  = J P  

implies that  X(c) ~ 1 and the proof is complete. | 

P r o o f  o f  Theorem 1.2: By Proposition 3.2 it suffices to verify the uniform 

distribution property for all ergodic, unipotent, affine transformations on T d. 

First observe that  relation (1) of Theorem 1.1 is preserved when passing to 

factors. Hence, using Lemma 4.1 we can assume that  T = T1 • T2 • . "  • Ts, 

where Tr: ~dr ~ ~]~dr (E:=I dr = d) is given by 

Tr(Xr l ,Xr2 , . . . ,Xrd , , )  : (Xrl + br,xr2 + xr l , . . . ,Xrd , .  + Xrdr -1) ,  

for r = 1 , 2 , . . . ,  s. Since T is ergodic the set {bl, b2 , . . . ,  bs} is rationally inde- 

pendent. For convenience, set Xro = br for r = 1, 2 , . . . ,  s. 
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We claim that  if x is chosen so that  the set 

C={xr j : l<r<s ,O<_j<_dr}  

is rationally independent, then the polynomial sequence 

= (Tpl(n)x, Tp2(n)x,..., TP"n)x) 

is uniformly distributed on ~dk (we include Xrdr in C only for simplicity). To 

see this we use the first part of Weyl's theorem; letting Qrjl (n) denote the j - th  

coordinate of T p~ 0~) x and 

(2) R(n) = ~ mrjlQrjl(n) 
r,j,l 

where {mrjt : 1 _< r < s,1 < j < dr,1 < 1 < k} are integers, not all of them 

zero, it suffices to check that  

N 
(3) l im L E e27riR(n) = O. 

N--+ oc N 
n=l 

To prove (3) we use the second part of Weyl's theorem; it suffices to show that  

the polynomial R(n) has at least one nonconstant coefficient irrational. We 

compute 

(4) Q~jl(n)=x~j+~ 1 ) X r j - l + ' ' ' + ~ j _ l J X r l +  Xro. 

We can put R(n) in the form 

(5) R(n) = E R~j(n)x~j, 
r,j 

where Rrj are integer polynomials and 1 < r < s, 0 < j _< dr. This representa- 

tion is unique since the x~j are rationally independent. So it remains to show 

that  some Rrj is nonconstant. To see this, choose any r0 such that  mrojl ~ 0 
for some j,  l, and define jo to be the maximum 1 _< j _< dr0 such that  m~ojl ~ 0 
for some 1 < l < k. We show that  Rro,jo-1 is nonconstant. By the definition 

of j0 we have mrojl = 0 for j > J0. For j _< j0 we see from (4) that  the vari- 

able x~ojo_l appears only in the polynomials Qrojd with coefficient pl(n), and 

if j0 > 1 also in the polynomials Qrv(jo-1)l with coefficient 1. It follows from 

(2) and (5) that  
k 

/=1 
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where c = 2~----1 mrojot if j0 > 1, and c = 0 if jo = 1. Since the polynomial 

family {pi(n)}ki=l is independent and mrojol ~ 0 for some l, the polynomial 

Rrojo-1 is nonconstant. We have thus established uniform distribution for a set 

of x of full measure, completing the proof. | 
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